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Abstract In many-electron atoms, the average electron
momentum 〈p〉 represents the mean momentum of a single
electron when all the electron motions are averaged. If any
two electrons are considered simultaneously, however, the
average momentum 〈p〉 splits into two different momenta,
low momentum 〈p<〉 and high momentum 〈p>〉. For the 102
atoms He through Lr in their ground states, the momenta
〈p<〉 and 〈p>〉 are systematically examined at the Hartree–
Fock limit level. It is also shown that the sum 〈p>〉 + 〈p<〉
and the difference 〈p>〉 − 〈p<〉 of the two momenta con-
stitute upper and lower bounds to the electron-pair relative
momentum 〈p12〉 = 〈|p1 − p2|〉 and to the electron-pair cen-
ter-of-mass momentum 〈P 〉 = 〈|p1 + p2|/2〉. The tightness
of the bounds is discussed for the 102 atoms.

Keywords Electron momenta · Splitting · Electron-pair
momenta · Upper and lower bounds · Many-electron atoms

1 Introduction

In many-electron atoms, the average distance of an electron
from the nucleus is given by the average electron radius 〈r〉,
which represents the mean radius of an electron orbital when
all the electron motions are averaged and only a single elec-
tron is focused upon. If any two electrons are considered
simultaneously, however, it has recently been shown [1] that
the average radius 〈r〉 splits into inner 〈r<〉 and outer 〈r>〉
radii to reduce the electron-electron repulsion. The splitting
of the average subshell radius 〈r〉nl into the inner 〈r<〉nl and
outer 〈r>〉nl radii was also discussed in Ref. [2], where n and
l are the principal and azimuthal quantum numbers.

In the present paper, we study the splitting of the aver-
age electron momentum 〈p〉 into low 〈p<〉 and high 〈p>〉
momenta, when any two electrons are considered explicitly.
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It is also shown that the sum 〈p>〉 + 〈p<〉 and the difference
〈p>〉 − 〈p<〉 of the two momenta constitute upper and lower
bounds, respectively, to the electron-pair relative momentum
〈p12〉 = 〈|p1 − p2|〉 as well as to the electron-pair center-
of-mass momentum 〈P 〉 = 〈|p1 + p2|/2〉. Numerical results
are discussed for the ground-state atoms He through Lr at
the Hartree–Fock limit level. Hartree atomic units are used
throughout.

2 Splitting of average electron momentum

In momentum space, the average radius of an electron orbital
is given by the average electron momentum 〈p〉 defined by

〈p〉 = 1

N

∞∫

0

dppI (p) , (1)

where I (p) is the single-electron radial momentum density
(see, e.g., Ref. [3]), normalized to N, the number of elec-
trons, and is related to the experimental Compton profile
J (q) through I (p) = −2p[dJ (q)/dq]q=p. The quantity 〈p〉
represents the mean radius of an electron momentum orbi-
tal when all the electron motions are averaged. If any two
electrons are considered simultaneously, however, the elec-
trons prefer different momenta, low momentum p< and high
momentum p>, to avoid each other in momentum space. As
they are the position-space counterparts [1], the average low
〈p<〉 and high 〈p>〉 momenta are defined by

〈p<〉 = 2

N(N − 1)

∞∫

0

dp1

∞∫

0

dp2 p< I2(p1, p2) , (2a)

〈p>〉 = 2

N(N − 1)

∞∫

0

dp1

∞∫

0

dp2 p> I2(p1, p2) , (2b)

wherep< = min(p1, p2),p> = max(p1, p2), and I2(p1, p2)
is the two-electron radial momentum density (see, e.g., Ref. [4])
normalized to N(N − 1)/2, the number of electron pairs.
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The single-electron radial momentum density I (p) that ap-
peared in Eq. (1) is obtained from I2(p1, p2) by I (p) =
[2/(N − 1)]

∫ ∞
0 dp2I2(p, p2). Since p< + p> = p1 + p2

and p> − p< = |p1 − p2|, we find

〈p<〉 = 〈p〉 − 1

2
〈|p1 − p2|〉 , (3a)

〈p>〉 = 〈p〉 + 1

2
〈|p1 − p2|〉 , (3b)

as well as (〈p<〉 + 〈p>〉)/2 = 〈p〉, where

〈|p1 − p2|〉 = 2

N(N − 1)

∞∫

0

dp1

∞∫

0

dp2|p1 − p2|I2(p1, p2).

(4)

Equation (3) implies that the explicit consideration of any two
electrons splits the momentum 〈p〉 into the momenta 〈p<〉
and 〈p>〉 separated by 〈|p1 − p2|〉. In other words, the tradi-
tional average momentum 〈p〉 consists of two components,
the low 〈p<〉 and high 〈p>〉 momenta, which can be more
informative for electronic structure studies than 〈p〉 itself.

3 Bounds to electron-pair relative and center-of-mass
momenta

Two important properties appearing in the electron-pair intra-
cule (relative motion) and extracule (center-of-mass motion)
studies in momentum space (see, e.g., Ref. [5]) are the elec-
tron-pair relative momentum (or the first intracule moment)
〈p12〉 = 〈|p1 − p2|〉 defined by

〈p12〉 = 2

N(N − 1)

∫
dp1

∫
dp2|p1 − p2|�(p1, p2) , (5a)

and the electron-pair center-of-mass momentum (or the first
extracule moment) 〈P 〉 = 〈|p1 + p2|/2〉 defined by

〈P 〉 = 2

N(N − 1)

∫
dp1

∫
dp2

|p1 + p2|
2

�(p1, p2) , (5b)

where �(p1, p2) is the spinless two-electron density func-
tion in momentum space (see, e.g., Ref. [5]) normalized to
N(N − 1)/2. The two-electron radial momentum density
I2(p1, p2) that appeared in Eq. (2) is obtained from �(p1, p2)
as I2(p1, p2) = p2

1p
2
2

∫
d�1d�2�(p1, p2), where (pi, �i)

are the polar coordinates of the momentum vector pi .
The relative momentum p12 = |p1 −p2| of two electrons

with momenta p1 and p2 is explicitly written as

p12 = (p2
1 + p2

2 − 2p1p2 cos θ12)
1/2 , (6)

where θ12(0 ≤ θ12 ≤ π) is the angle spanned by the vectors
p1 and p2. As −1 ≤ cos θ12 ≤ +1, it immediately follows
that

|p1 − p2| ≤ p12 ≤ (p1 + p2) , (7a)

which is rewritten in terms of the variables p< = min(p1, p2)
and p> = max(p1, p2) as

(p> − p<) ≤ p12 ≤ (p> + p<) . (7b)

We then have an inequality,

(〈p>〉 − 〈p<〉) ≤ 〈p12〉 ≤ (〈p>〉 + 〈p<〉) , (8)

which implies that the sum 〈p>〉 + 〈p<〉 of the high and low
momenta is an upper bound, whereas the difference 〈p>〉 −
〈p<〉 is a lower bound, to the electron-pair relative momen-
tum 〈p12〉. The width of the two bounds is twice the low
momentum, 2〈p<〉, and the arithmetic mean of the bounds is
the high momentum, 〈p>〉.

On the other hand, the center-of-mass momentum P =
|p1 + p2|/2 of two electrons with p1 and p2 is given by

P = 1

2
(p2

1 + p2
2 + 2p1p2 cos θ12)

1/2 . (9)

Therefore, discussion analogous to that for p12 results in an-
other inequality,

〈p>〉 − 〈p<〉
2

≤ 〈P 〉 ≤ 〈p>〉 + 〈p<〉
2

. (10)

By means of the low 〈p<〉 and high 〈p>〉 momenta, the
electron-pair center-of-mass momentum 〈P 〉 is also bounded
from above and below. The bounds are just half values of
those for 〈p12〉. Then, the width of the bounds is 〈p<〉 and
the arithmetic mean of the two bounds is 〈p>〉/2. The re-
sults are in accord with the literature observation [6] that
〈p12〉 ∼= 2〈P 〉.

4 Numerical results and discussion

We first examine the splitting of 〈p〉 into 〈p<〉 and 〈p>〉 for
the 102 atoms He through Lr in their ground states [7]. For
this purpose, we have performed numerical Hartree–Fock
calculations of the three momenta, using a modified version
of the MCHF72 program [8]. The calculated 〈p〉 values have
been verified by comparison with the literature values [9],
except the Bk and Lr atoms for which different states were
considered in Ref. [9].

The results are plotted in Fig. 1a as a function of atomic
number Z. All the momenta 〈p<〉, 〈p〉, and 〈p>〉 show a trend
to increase as Z increases. The splitting of 〈p〉 into 〈p<〉 and
〈p>〉 is smallest at Z = 2 (He) and largest at Z = 103 (Lr),
where the values of 〈|p1 − p2|〉 are 0.930 and 17.040, and
the ratios 〈p>〉/〈p<〉 are 1.996 and 3.460, respectively. In the
case of the Lr atom, the low 〈p<〉 and high 〈p>〉 momenta
are 55.2% smaller and larger than the usual average momen-
tum 〈p〉, respectively. When Z increases, the high momentum
〈p>〉 increases smoothly from 1.865 at Z = 2 to 23.967 at Z =
103. On the other hand, the low momentum 〈p<〉 distributes
between 0.744 (Z = 3) and 6.926 (Z = 103), and is found to
show a small periodical structure reflecting the valence elec-
tronic configuration of atoms. To clarify this, we have exam-
ined for 3 ≤ Z ≤ 103 the momentum increments defined by
the momentum values at Z subtracted by the corresponding
values at Z – 1, and plotted them in Fig. 1b. In contrast to
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Fig. 1 The Hartree–Fock average momenta as a function of Z.
a Momenta 〈p<〉, 〈p〉, and 〈p>〉. b Momentum increments

the high momentum, the low momentum clearly shows the
change in the valence configuration. Two typical cases are: (i)
The group 1 or 2 atoms with the valence s or s2 configuration
have local minima in the low momentum increments. (ii) The
transition atoms with valence sdn configurations have larger
increments than the neighboring atoms with s2dn configu-
rations. In Fig. 1a, 1b, the average momentum 〈p〉 lies at
the center of the low and high momenta as 〈p〉 is just the
arithmetic mean of 〈p<〉 and 〈p>〉.

We next discuss the tightness of the upper and lower
bounds derived in the previous section. The required relative
momenta 〈p12〉 were taken from Ref. [10] for Z = 2–54 and
from Ref. [11] for Z = 55–103. The center-of-mass momenta
〈P 〉 were reported in Ref. [6] for Z = 2–54 and in Ref. [11]
for Z = 55–103. For the Bk (Z = 97) and Lr (Z = 103) atoms,
however, the assignment of the ground electronic configu-
rations and LS terms has been updated [7] after publication
of Ref. [11]. Accordingly, the 〈p12〉 and 〈P 〉 values of these
two atoms have been recomputed in this study, based on the
methods developed in Refs. [6,10].

The upper and lower bounds are plotted in Fig. 2a for
〈p12〉 and in Fig. 2b for 〈P 〉 as a function of Z. In Fig. 2a, we
confirm numerically that the electron-pair relative momen-
tum 〈p12〉 is bounded by the sum 〈p>〉+ 〈p<〉 and the differ-
ence 〈p>〉 − 〈p<〉 for any atom. When averaged over the
102 atoms, the upper bound is 22.78% larger than 〈p12〉 with

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Z

M
om

en
ta

M
om

en
ta

<p12>

<p >> + <p <>

<p >> – <p <>

(a)

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100
Z

<P>

(<p >> – <p <>) / 2

(<p >> + <p <>) / 2

(b)

Fig. 2 The upper and lower bounds to the electron-pair momenta as a
function of Z. a Relative momentum 〈p12〉. b Center-of-mass momen-
tum 〈P 〉

minimum 20.84% (at Z = 4) and maximum 35.96% (at Z = 2)
differences. The lower bound is 33.54% smaller than 〈p12〉
on average, with the minimum 28.66% (at Z = 4) and maxi-
mum 54.81% (at Z = 2) differences. Figure 2b demonstrates
the inequality (Eq. 10) numerically. Due to the approximate
proportionality relation [6] 〈p12〉 ∼= 2〈P 〉, Fig. 2b for the
electron-pair center-of-mass momentum 〈P 〉 is very similar
to Fig. 2a for 〈p12〉, except for the ordinates. In the case of cen-
ter-of-mass momenta, however, the upper bound is 24.01%
larger and the lower bound is 32.88% smaller than 〈P 〉, when
averaged over the 102 atoms. (For both bounds to 〈P 〉, the
values and locations of the minimum and maximum differ-
ences are same as those for 〈p12〉.) Thus, the upper bound is
slightly more tight for 〈p12〉, whereas the lower bound is for
〈P 〉.

In Fig. 2a, b, we find that the momenta 〈p12〉 and 〈P 〉 lie
approximately at the center of the upper and lower bounds
for all the atoms. We have therefore examined possible cor-
relations of 〈p12〉 and 〈P 〉 with the mean values, 〈p>〉 and
〈p>〉/2, respectively, of the two bounds. Figure 3a, b shows
that there are good linear correlations between 〈p12〉 and 〈p>〉
and between 〈P 〉 and 〈p>〉/2. A regression analysis gives

〈p12〉 ∼= 1.049859〈p>〉 + 0.080069 , (11a)

〈P 〉 ∼= 1.047595
〈p>〉

2
− 0.009166 , (11b)
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Fig. 3 Linear correlations between electron-pair momenta and the high
momentum. a 〈p12〉 and 〈p>〉. b 〈P 〉 and 〈p>〉/2

with correlation coefficients 0.999990 and 0.999993. The
correlation is slightly better for the latter. In Eqs. (11a) and
(11b), the two linear coefficients are close to unity and the two
constant terms are close to zero. Then, it is anticipated that
the electron-pair momenta 〈p12〉 and 〈P 〉 are simply approxi-
mated by the high momentum 〈p>〉 and its half, respectively.
The anticipation is found to be true: The high momentum
〈p>〉 is only 5.38% smaller than 〈p12〉 and 〈p>〉/2 is only
4.43% smaller than 〈P 〉, when averaged over the 102 atoms.

5 Concluding remarks

Explicit consideration of any two electrons has shown that
the average electron momentum 〈p〉 is the arithmetic mean

of the low 〈p<〉 and high 〈p>〉 momenta. For the 102 atoms
He through Lr in their ground states, the momenta 〈p<〉 and
〈p>〉 have been systematically examined at the Hartree–Fock
limit level and the low momentum 〈p<〉 has been found to be
more sensitive to the electronic configuration than 〈p〉 and
〈p>〉. The electron-pair relative 〈p12〉 and center-of-mass 〈P 〉
momenta are bounded from above by the sum 〈p>〉 + 〈p<〉
and from below by the difference 〈p>〉 − 〈p<〉 of the two
momenta. The high momentum 〈p>〉 has good linear corre-
lations with the electron-pair momenta 〈p12〉 and 〈P 〉.

All the present theoretical results are valid both at the non-
relativistic and relativistic levels, though the numerical re-
sults are demonstrated within the nonrelativistic framework.
When the relativistic effect is included, the three momenta
〈p<〉, 〈p〉, and 〈p>〉 are expected to increase in a parallel man-
ner due to the so-called relativistic contraction of orbitals.
For the relativistic change of the tightness of the inequalities,
however, we have to await future examinations, as no rela-
tivistic electron-pair momenta are reported in the literature.
When the electron correlation is included, it is expected that
〈p<〉 decreases and 〈p>〉 increases due to the radial correla-
tion in momentum space. We wish to report such correlation
effects in a quantitative manner, when appropriate wave func-
tions are available for a group of atoms.
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